11,000 yrs of environmental change in the Northwest Passage: A multiproxy core record from central Parry Channel, Canadian High Arctic

Anna J. Pieńkowski a,⁎, John H. England b, Mark F.A. Furze c, Steve Blasco d, Peta J. Mudie d, Brian MacLean d

Article Info

Article history:
Received 19 July 2012
Received in revised form 30 March 2013
Accepted 21 April 2013
Available online 1 May 2013

Communicated by G.J. de Lange

Keywords:
Holocene environmental change deglaciation
Canadian Arctic Archipelago microfossils palynology

A B S T R A C T

Piston core 97022-004PC (74° 48.0′N 97° 05.9′W; 267 m water depth) represents a rare paleoenvironmental archive from the understudied west-central Canadian Arctic Archipelago. Lithological, biogeochemical, and microfossil (dinoflagellate cysts, non-pollen palynomorphs, benthic and planktonic foraminifera) characteristics, in combination with a chronostratigraphy based on seventeen radiocarbon dates, show seven prominent paleoenvironmental episodes since the end of the last regional glaciation. The basal diamict (Zone I) records decoupling of previously grounded glacial ice, followed by ice-proximal conditions (Zone Ila) commencing at ~10.8 cal ka BP (age-depth model extrapolation). After an interval of pervasive sea-ice (Zone IIb), ice-distal conditions are established (Zone IIc). Although sparse microfossils are present in glaciomarine sediments (Zone II), noticeable biological activity with heightened abundances and diversities across all groups begins in the postglacial Zone III (10.3–10.0 cal ka BP) when planktonic foraminifera (Neogloboquadrina pachyderma (N.P.)) appear. As planktonics are excluded from the study area today (due to shallow inter-channel sills), this likely signals the inflow of relatively warm and saline Atlantic-derived Arctic Intermediate Water below 250 m, presumably facilitated by glacio-isostatically enhanced deglacial water depths. The subsequent Zone IV (10.0–7.0 cal ka BP) is characterized by heightened biological productivity in both plankton and benthos and reduced seasonal sea-ice cover, may correspond to a previously proposed Holocene Thermal Maximum. This apparent amelioration ends by the mid Holocene (Zone V; 7.0–5.7 cal ka BP) when Arctic Intermediate Water is excluded from the study area and water depths approach modern values. High-Arctic conditions with seasonal sea-ice cover, a circulation dominated by Arctic Ocean Surface Water, and microfossil assemblages similar to modern are found from ~5.7 cal ka BP onwards (Zones VI–VII). As only minor environmental fluctuations are apparent during the late Holocene, shorter-term climatic episodes (e.g. Little Ice Age) are not recognized in this record.

Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

The Canadian Arctic Archipelago (CAA; Fig. 1A) occupies a fundamental role in global oceanographic circulation, freshwater budgets, and ecosystems (Melling, 2000; Munk, 2003; ACIA, 2005). Like other Arctic regions, marine and terrestrial CAA environments have shown recent shifts, including: sea-level rise, sea-ice decline, and increasing mean annual temperature (ACIA, 2005; IPCC, 2007). Longer term (pre-instrumental measurement) variability is also suggested by regional marine records (MacLean and Vilks, 1986; MacLean et al., 1989; Mudie et al., 2005; Richerol et al., 2008; Schell et al., 2008a; Scott et al., 2009; Vare et al., 2009; Belt et al., 2010; Gregory et al., 2010; Ledu et al., 2010a, 2010b; Pieńkowski et al., 2011; Melling et al., 2012; Pieńkowski et al., 2012), which provide a long-term context for current environmental changes (Bradley and England, 2008; England et al., 2008; Polvak et al., 2010; White et al., 2010). However, the spatial coverage of records from the marine CAA (“Northwest Passage” = NWP; Fig. 1) remains limited, and important deglacial–postglacial changes (Laurentide–Innuitian ice sheet decoupling, meltwater outflow, sea-level fluctuations) have been primarily terrestrial-derived (e.g. Hodgson and Vincent, 1984; Dyke and Prest, 1987; Bradley, 1990; Dyke et al., 1991; Cajewski, 1995; Dyke et al., 1996a, 1996b; Dyke, 2004; England et al., 2006, 2009).

To improve the spatial and temporal resolution of CAA marine data, we present a chronologically well-constrained, long-term record from west-central Parry Channel, extending to deglaciation (~11 cal ka BP), from a critical decoupling zone between Innuitian and Laurentide ice sheets (Dyke, 2004; England et al., 2006), Core 9722-004PC (Fig. 1) was studied for lithology, macro- and microfossils; previous work on this record includes a qualitative foraminiferal assay and eight 14C dates (Blasco et al., 2005). This study elucidates the regional marine
environmental changes, focusing on the deglacial to early postglacial interval, complementing and expanding the terrestrial record and advancing our understanding of the late Quaternary evolution of Arctic North America.

2. Regional setting

Parry Channel, the main geographic NWP axis (Pharand, 1984), comprises several interlinked waterways. Barrow Strait is flanked to the west by Viscount Melville Sound and M’Clure Strait, and to the east by Lancaster Sound (Fig. 1A). Modern circulation is controlled by numerous shallow sills limiting deep water flow. The Lowther–Young islands sill (~125 m; Fig. 1B) permits Arctic Ocean Surface Water (AOSW; Melling, 2000; Melling et al., 2012) throughflow from Canada Basin but restricts entry of Arctic Intermediate Water (AIW; Atlantic origin, >200–250 m; Jones, 2001) to Lancaster Sound and M’Clure Strait (Jones and Coote, 1980; Coote and Jones, 1982; Tang et al., 2004). Paciﬁc-derived AOSW occurs throughout Barrow Strait (Jones et al., 2003; Michel et al., 2006) whereas Atlantic water ﬂows westward into Parry Channel (Baffin Bay Atlantic Water = BBAW; Leblond, 1980; Rudels, 1986), mixing with eastward-ﬂowing Barrow Strait AOSW (BBAW/AOSW; Tang et al., 2004; Michel et al., 2006). Piston core 9722-004PC was recovered in northwestern Barrow Strait adjacent to McDougall Sound (Fig. 1B). The site receives AOSW via Viscount Melville Sound (west) and Penny Strait (north), whose waters are more saline and colder (>32.8 salinity, −1.77 °C at 10 m depth; Prinsenberg and Bennett, 1987). Warmer, fresher water which ﬂows in via Peel Sound (south; Fig. 1A) diverges eastward, around northern Somerset Island (Prinsenberg and Bennett, 1987). Strong tidal currents (50–150 cm/s) around shallow sills contribute to waters mixing en route to Baffin Bay (Melling, 2000). First-year fast ice dominates this region, with freeze-up in late September/early October and break-up by mid-July (Pharand, 1984; Barry, 1993; Michel et al., 2006). Open

Fig. 2. Core 9722-004PC lithostratigraphy and age-depth model. Lithostratigraphic codes are based on Eyles et al. (1983). Ds = stratified diamict; F = ﬁnes; m = massive; I = laminated; (l) = faintly laminated; d = dropstones. Paleoenvironmental Zones (I–VII; distinguished by alternating gray and white bands) were determined according to a combination of litho- and bio-stratigraphic characteristics. The age-depth model is based on eight calibrated radiocarbon dates. Dates on detrital-feeding molluscs not used in age-depth model construction are shown for comparison only. Dates >20 ka BP are uncalibrated. Details of radiocarbon dates can be found in Table 1.

Fig. 1. (A) Map of the Canadian Arctic Archipelago (CAA) showing the generalized oceanographic circulation (after Ingram and Prinsenberg, 1998). Ice core locations referred to in the text are denoted by a star (✦), including the Agassiz Ice Cap (Elsemes Island), the Penny Ice Cap (Baffin Island), the Devon Ice Cap (Devon Island), and the Meighen Ice Cap (Meighen Island). Abbreviations: AD Inlet = Admiralty Inlet; ARI = Amund Ringnes Islands; BI = Borden Island; BM Ch. = Byam Martin Channel; BSZ = Barrow Strait; CMI = Cornwallis Island; EI = Ellesmere Island; ERI = Ellef Ringnes Island; MDS = McDougall Sound; MI = Meighen Island; MKI = Mackenzie King Island; PGA Sea = Prince Gustav Adolf Sea; PR Inlet = Prince Regent Inlet; PST = Penny Strait; PWS = Prince of Wales Strait; QM Gulf = Queen Maud Gulf; VMS = Viscount Melville Sound; W Ch. = Wellington Channel. (B) Detailed inset of the core site 9722-004 (“004”), including bathymetry (based on Jakobsson et al., 2008), deglacial dates in cal ka BP (numbers in black circles correspond to dates in Table 2), and deglacial to Holocene long cores 86027-144 (“144”; Pietrkowski et al., 2012) and 86027-154 (“154”; Pietrkowski et al., submitted for publication). Abbreviations: McD. Sd. = McDougall Sound.
water allows multi-year pack-ice to enter western Barrow Strait via McDougall Sound (Melling, 2002), as observed recently (Michel et al., 2006; Howell et al., 2009).

3. Materials and methods

3.1. Core materials & sediment properties

Piston core 9722-004PC ("004PC"), retrieved at 74°48.0"N 97°05.9"W (267 m water depth; Fig. 1B) by the Geological Survey of Canada (GSC)-Atlantic (Hurlbut, 1997), consists of ~400 cm of massive silty clay overlying laminated clays (404–453 cm) and diamicton (453–523 cm; Fig. 2). Similar sediment sequences have been interpreted as i) massive, fine-grained postglacial sediments overlying; ii) ice-proximal to -distal laminated glaciomarine sediments deposited by a retreating grounded glacier and/or beneath ice shelves; and iii) "glacial drift" — till derived from grounded ice or ice-proximal deposition (MacLean et al., 1989; Andrews et al., 1991; Pierikowski et al., 2012).

Magnetic susceptibility (MS), density and grain size (Beckman Coulter LS230 laser diffraction instrument; range 0.4–2000 μm) were measured at GSC-Atlantic. Percentages of lithoclasts >125 μm to 2 mm and >2 mm relative to total dry weight were used to determine coarse sediment input and ice rafting (either glacial or sea-ice). For biogenic silica (BioSil) content (%), oven-dried (45 °C) and powdered sediment samples (~2 g) were measured by the Pacific Centre for Isotopic and Geochemical Research (University of British Columbia) following Mirtloch and Frolich (1989). Sedimentation rates were derived from the age-depth model (Section 3.3).

3.2. Chronostratigraphy

Seventeen AMS (Accelerator Mass Spectrometry) 14C dates were obtained (Table 1; eight pre-existing, nine new dates) and all were calibrated in CALIB 6.0 (Stuiver et al., 2013), using Marine09 (Reimer et al., 2009), and a CAA ΔR of 335 ± 85 yrs (Coulthard et al., 2010). Dates older than the Last Glacial Maximum (LGM; >18 14C ka BP) fall beyond, and hence preclude the use of, the Marine09 curve.

Seven radiocarbon dates were based wholly or partially on identified deposit-feeding molluscs (Yoldiella spp., Yoldia sp.; Ockelmann, 1958), which suffer non-systematically from enhanced apparent age effects ("Portlandia Effect") due to uptake of "old" detrital carbon from carbonate bedrock (cf. Forman and Polvak, 1997; England et al., 2012). As expected, most of these dates plot older than the age-depth curve, and were excluded from age-depth model construction; nonetheless, they are plotted (Fig. 2) for comparison with non-Portlandia Effect samples. At 395–397 cm depth, dates on detrital-feeding molluscs and benthic and planktonic foraminifera allow direct comparison between different materials (Table 1). The two Yoldiella fraterna dates are consistently older than foraminiferal dates (as expected) though a ~380 cal yrs difference exists between benthic and planktonic foraminiferal dates, the benthic Islandiella norcrossi appearing older. Such differences may arise from time averaging, species-specific effects, or watermass ventilation histories (depth-variable ΔR).

For further comparisons of the 004PC chronology with regional (raised marine) ages, previously published dates were calibrated using the same protocol (above). Where appropriate, such land-based dates were first “de-corrected” for prior reservoir correction (GSC dates post 1992; Coulthard et al., 2010). Dates originally normalized to δ13C of 0‰ were converted to the equivalent conventional radiocarbon age (normalized to −25‰; δ13C; sensu Stuiver and Polach, 1977) by adding 400 14C yrs (Coulthard et al., 2010). Marine mammal dates were calibrated using the above methodology, with a ΔR of 170 ± 95 yrs for bowhead whale (Balaena mysticetus; Furze et al., submitted for publication) and a ΔR of 335 ± 85 yrs for walrus (Odobenus rosmarus) given their mollusc diet (cf. Coulthard et al., 2010). Molluscan ages >10.5 14C ka BP were provisionally calibrated using ΔR of 1000 yrs due to presumably limited Arctic Ocean ventilation during, and prior to, the Younger Dryas (Hanslik et al., 2010).

3.3. Age-depth model

A best-fit (fourth-order polynomial) curve was plotted through CALIB 6.0 median probability ages and associated 95.4% probability age ranges against core depth (Fig. 2). The curve excluded all samples with the Portlandia Effect; a previously dated sample on deposit-feeding bivalves and a predatory opisthobranch gastropod (Beta-115389); and four considerably older (>37,000 14C yrs) basal dates incorporating reworked pre-Late Wisconsinan material (Fig. 2; Table 1).

Beyond the ages obtained on the uppermost and lowermost (post-glacial) non-deposit feeder samples, the polynomial curve is extrapolated. Towards the core base, linear extrapolation to the

Table 1

<table>
<thead>
<tr>
<th>Core depth (cm)</th>
<th>Laboratory code</th>
<th>Material dated</th>
<th>Machine age ± 1σ (14C yrs BP)</th>
<th>δ13C (%)</th>
<th>68.2% range (cal yrs BP) probability 1</th>
<th>95.4% range (cal yrs BP) probability 1</th>
<th>Calib median probability age (cal yrs BP) rounded to nearest 10 cal yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>43–45</td>
<td>Beta-115388</td>
<td>Bivalve Yoldia sp.</td>
<td>1660 ± 50</td>
<td>0.70</td>
<td>754–959</td>
<td>668–1068</td>
<td>870</td>
</tr>
<tr>
<td>201–203</td>
<td>Beta-124620</td>
<td>Mixed benthic foraminifera</td>
<td>4550 ± 50</td>
<td>−1.70</td>
<td>4153–4426</td>
<td>4004–4570</td>
<td>4300</td>
</tr>
<tr>
<td>261–263</td>
<td>Beta-124621</td>
<td>Mixed benthic foraminifera</td>
<td>5690 ± 80</td>
<td>−0.60</td>
<td>5607–5852</td>
<td>5472–5973</td>
<td>5730</td>
</tr>
<tr>
<td>295–297</td>
<td>OS-74915</td>
<td>Macro-algal matter</td>
<td>7590 ± 45</td>
<td>−18.36</td>
<td>7625–7819</td>
<td>7557–7919</td>
<td>7730</td>
</tr>
<tr>
<td>321–323</td>
<td>Beta-124622</td>
<td>Mixed benthic foraminifera</td>
<td>7770 ± 40</td>
<td>−1.70</td>
<td>7795–7987</td>
<td>7688–8099</td>
<td>7890</td>
</tr>
<tr>
<td>340</td>
<td>Beta-115388</td>
<td>Bivalve Portlandia frigida & Gastropod Retusa sp.</td>
<td>8000 ± 50</td>
<td>0.00</td>
<td>8007–8226</td>
<td>7938–8331</td>
<td>8130</td>
</tr>
<tr>
<td>355–357</td>
<td>OS-74899</td>
<td>Polychaete tube</td>
<td>9150 ± 150</td>
<td>−22.98</td>
<td>9255–9728</td>
<td>9023–1011</td>
<td>9500</td>
</tr>
<tr>
<td>370</td>
<td>Beta-115390</td>
<td>Bivalve Portlandia frigida</td>
<td>9460 ± 40</td>
<td>0.80</td>
<td>9739–10,071</td>
<td>9593–10,155</td>
<td>9890</td>
</tr>
<tr>
<td>395–397</td>
<td>OS-92978</td>
<td>Benthic foraminifera Islandiella norcrossi</td>
<td>9880 ± 35</td>
<td>−1.01</td>
<td>10,294–10,501</td>
<td>10,211–10,567</td>
<td>10,400</td>
</tr>
<tr>
<td>395–397</td>
<td>OS-95119</td>
<td>Planktonic foraminifera Neogloboquadrina pachyderma</td>
<td>9560 ± 70</td>
<td>−0.05</td>
<td>9878–10,184</td>
<td>9651–10,273</td>
<td>10,010</td>
</tr>
</tbody>
</table>
Table 2
Mollusc-based deglacial dates from the coasts of central Parry Channel (locations shown in Fig. 1B). 14C dates were calibrated using CALIB 6.0 (Stuiver et al., 2013) based on the marine calibration data set Marine09 (Reimer et al., 2009), with a ΔR value of 335 ± 85 yrs (10,500 14C yrs BP; Couthoul et al., 2010) or 1000 yrs (10,500 14C yrs BP; Hanslik et al., 2010). Dates indicated by * were first ‘de-corrected’ for any prior reservoir correction (GSC dates post-1992; Couthoul et al., 2010) or, where originally normalized to a δ13C ratio of 0‰, converted to the equivalent of a conventional radiocarbon age (normalized to −25‰; sensu Stuiver and Polach, 1977) by adding 400 14C yrs (Couthoul et al., 2010).

<table>
<thead>
<tr>
<th>Site no.</th>
<th>Location</th>
<th>Laboratory code</th>
<th>Material dated</th>
<th>Published age ± 1σ (14C yrs BP)</th>
<th>Elevation (m)</th>
<th>Marine limit (m)</th>
<th>68.2% range (cal yrs BP) probability 1</th>
<th>95.4% range (cal yrs BP) probability 1</th>
<th>Calib 6.0 median probability age (cal yrs BP) to nearest 10 yrs</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bathurst I, Allison Inlet</td>
<td>GSC-353</td>
<td>Hiatella arctica</td>
<td>9070 ± 190</td>
<td>104</td>
<td>>104</td>
<td>9632–10,155</td>
<td>9427–10,405</td>
<td>9890</td>
<td>75° 06'</td>
<td>N</td>
<td>Dyke et al. (1991)</td>
</tr>
<tr>
<td>2</td>
<td>Bathurst I, Dyke Acland Bay</td>
<td>GSC-250</td>
<td>Hiatella arctica</td>
<td>8590 ± 140</td>
<td>107</td>
<td>110</td>
<td>9110–9480</td>
<td>8865–9961</td>
<td>9290</td>
<td>75° 0.3'</td>
<td>N</td>
<td>Bednarski (2003)</td>
</tr>
<tr>
<td>7</td>
<td>Cornwallis I, Resolute Bay</td>
<td>QL-1751</td>
<td>Hiatella arctica & Balanus balanus</td>
<td>9690 ± 90</td>
<td>113</td>
<td>120</td>
<td>10,037–10,380</td>
<td>9834–10,503</td>
<td>10,390</td>
<td>74° 42.7'</td>
<td>N</td>
<td>Washburn and Stuiver (1985)</td>
</tr>
<tr>
<td>8</td>
<td>Devon L, Radstock Bay</td>
<td>GSC-1502</td>
<td>Balanus balanus</td>
<td>9260 ± 150±</td>
<td>105</td>
<td>>107</td>
<td>9903–10,374</td>
<td>9652–10,531</td>
<td>10,130</td>
<td>74° 40'</td>
<td>N</td>
<td>Dyke et al. (1999)</td>
</tr>
<tr>
<td>9</td>
<td>Devon L, Gascogne Inlet</td>
<td>GSC-5940</td>
<td>Hiatella arctica</td>
<td>9470 ± 90±</td>
<td>115</td>
<td>115</td>
<td>10,255–10,506</td>
<td>10,138–10,639</td>
<td>10,390</td>
<td>74° 39.3'</td>
<td>N</td>
<td>Dyke et al. (1999)</td>
</tr>
<tr>
<td>10</td>
<td>Prince of Wales I, northwestern</td>
<td>S-2708</td>
<td>Hiatella arctica</td>
<td>11,005 ± 170</td>
<td>133</td>
<td>≤188</td>
<td>11,652–12,367</td>
<td>11,329–12,558</td>
<td>11,970</td>
<td>73° 47'</td>
<td>N</td>
<td>Dyke (1987)</td>
</tr>
<tr>
<td>12</td>
<td>Arubia Bay, eastern end</td>
<td>GSC-3994</td>
<td>Shell</td>
<td>9360 ± 150±</td>
<td>84.5</td>
<td>95</td>
<td>10,104–10,509</td>
<td>9739–10,622</td>
<td>10,270</td>
<td>73° 55'</td>
<td>N</td>
<td>Dyke et al. (1991)</td>
</tr>
<tr>
<td>13</td>
<td>Prince of Wales I, Cape Hardy</td>
<td>S-2710</td>
<td>Shell</td>
<td>9845 ± 150±</td>
<td>95</td>
<td>95</td>
<td>10,186–10,545</td>
<td>9869–10,799</td>
<td>10,360</td>
<td>73° 47.5'</td>
<td>N</td>
<td>Dyke et al. (1991)</td>
</tr>
<tr>
<td>14</td>
<td>Somerset I, Cape Anne</td>
<td>GSC-319</td>
<td>Shell</td>
<td>9380 ± 150±</td>
<td>121</td>
<td>122</td>
<td>10,076–10,551</td>
<td>9671–10,746</td>
<td>10,280</td>
<td>73° 51.5'</td>
<td>N</td>
<td>Dyke et al. (1991)</td>
</tr>
<tr>
<td>15</td>
<td>Somerset I, Cunningham Inlet</td>
<td>GSC-150</td>
<td>Shell</td>
<td>9180 ± 170±</td>
<td>62</td>
<td>122</td>
<td>9739–10,248</td>
<td>9539–10,466</td>
<td>10,020</td>
<td>73° 59'</td>
<td>N</td>
<td>Dyke et al. (1991)</td>
</tr>
</tbody>
</table>

Boundary between laminated (glaciomarine) and diamicton (−glacial) facies provides an age of ~11.8 cal ka BP for deglaciation, older than the well-constrained chronologies from adjacent island coastlines (Dyke, 1993; Bednarski, 2003). The lithology of the basal core units (ice-proximal rhythmites, diamictons) suggests elevated sedimentation rates (Cowan et al., 1997) and thus steepening of the age-depth curve, consistent with fourth-order polynomial extrapolation. Towards the core top, the only date available (44 cm; Beta-115388; 870 cal yrs BP) is on a deposit-feeding mollusc. Given the propensity of deposit-feeding molluscs for enhanced age effects (England et al., 2010), this date should be regarded with caution, but can be used as a maximum age. Projection of the age-depth model (Fig. 2) defines a core-top age range between 0 yrs BP (youngest possible age) and 750 yrs BP (constrained by Beta-115388). An age closer to 750 yrs BP is more consistent with loss of upper seabed sediments during piston coring. The absence of calcareous foraminifera or molluscs, and thus lack of chronological control, prevents a meaningful investigation of the accompanying trigger weight core (97022-004TWC; Hurllbut, 1997). However, previous qualitative (>63 μm) foraminiferal analyses on this record (Blasco et al., 2005) confirm that the top ~100 cm of 004PC is similar to 004TC, both being dominated by agglutinated faunas.

Marine limit (highest deglacial sea-level) ages from nearby coastlines and marine deglacial dates further constrain the age-depth model. The east–west progression of deglaciation through eastern and central Parry Channel (Dyke et al., 1991; Dyke, 2004) suggests ice lift-off and fragmentation at the study site at, or after, ~11.0 cal ka BP, as established for eastern Parry Channel (Pielikowski et al., 2012). Given its location, deglaciation of the study site must predate the 10.4 cal ka BP marine limit on Lowther Island (Table 2), where striations suggest a short-lived local ice cap after Laurentide retreat (thus ice break-up and glaciomarine conditions), but before emplacement of the 10.4 cal ka BP shoreline (~9.5 14C ka BP; Dyke, 1993). Assuming steepening of the age-depth curve on sedimentological grounds, and using
Fig. 3. Results of sedimentological analyses on core 9722-004PC, including magnetic susceptibility, bulk density, % grain size, % coarse fraction contribution (determined from foraminiferal subsamples), and biogenic silica. The age-depth relationship is given according to the age-depth model (Fig. 2).
regional deglacial dates for maximum and minimum ages, the fourth-order polynomial suggests deglaciation (transition laminated to diamicton sediments, 453 cm; Sections 5.1–5.2) at ~10.8 cal ka BP, fully compatible with the comprehensive terrestrial deglacial chronology.

3.4. Microfossils

Samples (~5 cm³; 5–20 cm intervals) for organic microfossil analyses (dinoflagellate cysts = dinocysts, other non-pollen palynomorphs = NPPs) were wet-weighed, oven-dried (40 °C), and wet-sieved at 125 μm with distilled water. The <125 μm fraction was processed by repeated digestion in 38% cold hydrofluoric and 10% cold hydrochloric acids, followed by sieving at 10 μm with distilled water (Marret and Zonneveld, 2003; protocol 1). Lycopodium clavatum tablets (batch #483,216; x = 18,583 ± 3820) were added to samples prior to 125 μm wet-sieving to permit calculation of palynomorph concentrations (Stockmarr, 1971), given in number of palynomorphs per dry gram of sediment. Organic residues were mounted in safranin-stained glycercine jelly and systematically scanned under light-transmitted microscopy (×400). Wherever possible, ≥300 dinocysts were counted per sample (average count: 150 cysts), noting any co-occurring NPPs. Palynomorphs were identified using de Vernal et al. (1989), Kunz-Pirrung (1998), Rochn et al. (1999), Head et al. (2001), Roncaglia (2004), and Piekófska et al. (2011, 2012). Folded, smooth-walled, round brown cysts not certainly identified as Brigantedinium spp. were grouped as Protoperidinium spp. Spiny, brown cysts not confidently identified as Islandinum minutum were grouped as cf. I. minutum. Within Polykrikos, Arctic morphotypes (M1, M2), Polykrikos sp. A (cf. Mudie and Short, 1985), and Polykrikos sp. S (possessing short, faint crests) were distinguished. Islandinum? cezare s.I. includes Islandinum? cezare and Echinidendrum karaense. Other NPPs comprise acritarchs (Halodinium minor, Palaeoscamozosystis subtilithica, Palaeoscamozosystis frittila), freshwater algae, zooplankton remains, and miscellaneous algal filaments/tissues (“phytodebris”). Acritarchs of unknown biological affinity include Acritarch P (similar to Cyst P of Scott et al., 1984; after Piekófska et al., 2011, 2012), and Acritarch Q (Piekófska et al., 2011). Microforaminiferal linings, classified sensu Stancliffe (1991), included biserial (forms A, B), trochosorial (chambers discrete: C; chambers overlap: D), planispiral forms (chambers discrete: E), and miscellaneous others (F).

The >125 μm fraction of sieved samples was oven-dried (40 °C), and examined for calcareous micro- (benthic, planktonic foraminifera; ostracods), and macro-fossils (molluscs, macro-algal matter, worm tubes) with binocular microscopy. foraminifera were identified following Vilkis (1969, 1989). I. norcrossi, Islandiella helenae, and Cassidulina neoteretis (sensu Seidenkrantz, 1995) are separated (contrary to Scott et al., 2009; Gregory et al., 2010). Islandiella spp. includes all foraminifera not confidently identified to species level (likely I. norcrossi or I. helenae) due to breakage/dissolution. Neogloboquadrina pachyderma [=N. pachyderma sinistral [Ehrenberg, 1861]] is defined sensu Darling et al. (2006). Although likely unrepresentative of the total foraminiferal fauna, >125 μm microfossils complement palynomorph and sedimentary analyses.

4. Results

4.1. Sediment properties

Apart from a sandy interval (~20 cm core depth), 004PC shows quite uniform clayey silt, with <2% sand from 0 to 400 cm. Sand content increases slightly within the laminated silty clay (400–450 cm) and markedly within the basal diamicton (reaching 55% below 450 cm; Fig. 3). The coarse fraction (>125 μm) also increases towards the base. Sedimentation rates are low within the upper ~400 cm (~0.1 mm/cal yr) but increase towards the core base (max. 45 mm/cal yr). Density (~1–2.5 g/cm³) is highest in the diamicton. MS measures between ~15 and 40 × 10⁻⁵ SI, with peaks of ~90 × 10⁻⁵ SI near the top (~10 cm) and at the transition from massive to laminated sediments (~393 cm). BioSil generally decreases below 220 cm (Fig. 3).

4.2. Micro- and macro-paleontology

Palynomorphs are generally abundant and well-preserved above the diamicton. Dinocyst concentrations (range 23–27,300 cysts/g; average 8970 cysts/g) and fluxes (range 10–306,000 cysts/cm²/cal yr; average 112,000 cysts/cm²/cal yr; Fig. 4a) are lowest in the laminated unit (~400–450 cm) and highest in the uppermost 160 cm massive sediments (Fig. 4a). The sparse dinocysts within the diamicton are likely reworked as indicated by the pre-Late Wisconsinan ages (Table 1). Dinocyst assemblages are primarily composed of I. minutum and Brigantedinium spp. with lesser I. cezare s.I. proportions. I. minutum and Brigantedinium spp. generally co-dominate Canadian High Arctic surface sediments (Mudie and Rochon, 2001; Protoperidinium cysts (possible Brigantedinium spp.) are also abundant. I.? cezare and E. karaense are generally considered faithful indicators of severe sea-ice regimes (Kunz-Pirrung; 1998; Head et al., 2001; Mudie and Rochon, 2001; Matthiessen et al., 2005), though I.? cezare has been recorded in temperate latitudes (Pospelova et al., 2004, 2005). Arctic morphotypes of Polykrikos (M1, M2), first described from Russian sediments (Kunz-Pirrung, 1998) are prominent towards the base of the massive muds (300–360 cm; Fig. 4a). Overall, dinocyst assemblages primarily encompass typical high-latitude heterotrophs tolerant of large fluctuations in physical parameters (temperature, salinity, sea-ice; Rochon et al., 1999; Mudie and Rochon, 2001; Matthiessen et al., 2005). Assemblages are less diverse than those reported for the low Arctic CAA (Piekófska et al., 2011) and Labrador Arctic fjords (Richerol et al., 2012), though they resemble regional CAA records (Mudie and Rochon, 2001; Mudie et al., 2005; Ledu et al., 2010a, 2010b; Piekófska et al., 2012). Phototrophs are rare — only Spiniferites sp. occurs in low proportions from 116 to 220 cm (Fig. 4a). NPPs are sparse >360 cm (~2700 specimens/g; <2700 specimens/cm²/cal yr), but concentrations increase upwards, especially <100 cm, where H. minor, Acrachtr P, and foraminiferal linings (forms A–E) are abundant (Fig. 4b). Conversely, foraminiferal linings and phytofidebris are most abundant between 250 and 80 cm.

Foraminifera are abundant between ~400 and 180 cm (Fig. 5). Sparse foraminifera within the diamicton (453 cm) are likely reworked given their pre-Late Wisconsinan ages (Table 1). Foraminiferal abundances are especially high at the base of the massive unit (~400–380 cm; Fig. 5), benthics generally outnumbering planktonic foraminifera by an order of magnitude. Although the total foraminiferal fauna likely incorporates smaller (>45 μm) taxa (cf. Schell et al., 2008a, 2008b; Scott et al., 2009), our >125 μm fraction comprises prominent Arctic shelf species, including: I. norcrossi and Cassidulina reniforme, Elphidium sp., Cibicides lobatus, and Nonionellina larodarica (Vilkis, 1969, 1989; Schröder-Adams et al., 1990; Hunt and Corliss, 1993). Planktonic foraminifera solely comprise N. pachyderma (including aberrant, right-coiling forms sensu Darling et al., 2006). Ostracods (mainly Cyprideis paralatissima) co-occur with planktonic foraminifera. Mollusc shells and fragments occur below ~260 cm depth; undifferentiated macro-algal matter is present throughout (Fig. 5).

4.3. Paleoenvironmental zones

Core 004PC was subdivided into seven paleoenvironmental zones based on a combination of litho- and biostratigraphic characteristics. These zones record major environmental changes through time, as shown in both age (cal ka BP; age-depth model derived) and core depth domains (Figs. 3–5).
4.4. Zone I (523–453 cm; >10.8 cal ka BP)

4.4.1. Chronology

1. Three ^{14}C dates (Table 1) pre-date the LGM, the youngest age being ~40.6 ^{14}C ka BP. Extrapolation of the age-depth model indicates a Zone I/II boundary at ~10.8 cal ka BP (Fig. 2).

4.4.2. Characteristics

The sandy gravelly mud of Zone I, crudely stratified in X-radiography, shows the coarsest sediment, highest density (~2.5 g/cm3), and highest sedimentation rates (4–45 mm/cal yr) within 004PC. MS (-15.1 to 12.6×10^{-5} SI) and BioSil (2.36%) are relatively low. Sparse microfossils include benthic foraminifera ($C. lobatus$, $C. reniforme$, Stetsonia horvathi) and dinocysts ($Brigantedinium$ spp., $I. cezare$); pre-Quaternary dinocyst and phytodebris concentrations are elevated.

4.4.3. Interpretation

Zone I is a diamicton deposited during the last deglaciation. Crude stratification is characteristic of an ice-proximal glaciomarine environment (e.g., "rainout till" sensu Kellogg and Kellogg, 1998; Anderson et al., 1992; Licht et al., 1999) accompanied by decoupling of glacial ice from the seabed. The coarse texture and density – less than typical lodgement till (Kellogg and Kellogg, 1998) – support this interpretation. Similarly, sparse microfossils, abundant pre-Quaternary dinocysts, and pre-Late Wisconsinan molluscs (Table 1) are consistent with glacial
Fig. 5. Results of calcareous microfossils and macrofossils >125 μm in core 9722-004PC. Total absolute abundances of benthic and planktonic foraminifera (solely Neogloboquadrina pachyderma) are shown per 10 cc (upper x-axes) and per dry gram (lower x-axes). Absolute abundances of individual benthic foraminiferal taxa and total ostracods are given per 10 cc. Other materials (including molluscs, worm tubes, and macro-algae) are classified according to presence/absence. The age-depth relationship is given according to the age-depth model (Fig. 2).
reworking of older marine sediments. Radiocarbon dates provide a maximum age for local ice advance at \(\leq 40.6 \) ¹⁴C ka BP (Table 1).

4.5. Zone II (453–406 cm; \(-10.8–10.3 \) cal ka BP)

4.5.1. Chronology

In the absence of reliable (non-reworked) dates, age-depth model extrapolation (Section 3.3) indicates the following subzone boundaries: Subzone IIa (453–440 cm, 10.8–10.7 cal ka BP); Subzone IIb (440–416 cm, 10.7–10.4 cal ka BP); Subzone IIc (416–406 cm, 10.4–10.3 cal ka BP; Fig. 2).

4.5.2. Characteristics

Zone II comprises laminated, lonestone bearing, silty clay with slightly higher MS (\(-3 \) to \(12 \times 10^{-5} \) SI), lower bulk density (\(-1.7 \) g/cm³) and increased BioSil (max. 3.68%) than Zone I. Based on litho- and biostratigraphy, three subzones are apparent. Laminated silty clay with lonestones and two sand horizons (Subzone IIa) is overlain by laminated silty clay (Subzone IIb), capped by faintly laminated silty clay with lonestones (Subzone IIc). Foraminiferal and dinocyst abundances increase upwards, but are rare within Subzone IIb. Foraminifera include only benthic taxa (\(I.\) norcrossi, \(C.\) reniforme, \(E\). phildipoides, \(S.\) horvathi). Low-diversity dinocyst assemblages of Subzones IIa and IIc are dominated by \(B.\) lirigedospermum spp. and \(I.\) minutum with lesser \(P.\) protoperidinium spp., whereas \(I.\) cezare dominates Subzone IIb. Acritarchs and zoomorphs are rare; however, infrequent \(H.\) minor and invertebrate eggs first appear in Subzone IIb. Phytodebris (max. 960/g) is elevated compared to Zone I, whereas pre-Quaternary dinocysts reach highest concentrations within 004PC (max. 320 specimens/g).

4.5.3. Interpretation

Zone II represents initially ice-proximal to increasingly distal glaciomarine conditions initiated at \(-10.8 \) cal ka BP. Subzone IIa is the most ice-proximal; coarse sediments, including lonestones (interpreted as dropstones) being deposited when ice retreated northward into McDougall Sound. The prominent sandy horizons bounding Subzone IIa are typical of ice-proximal glaciomarine sequences with grounding-line fan and turbidity current deposition (Kellogg and Kellogg, 1998; Evans and Pudsey, 2002). High clastic sediment input limits nutrients and food supply, as reflected in low bioproduction (Korsun and Hald, 1998; Jaeger and Nittrouer, 1999; Gordillo and Aitken, 2001). Prominently-laminated sediments in Subzone IIb indicate cessation of coarse sediment deposition, rapid retreat of glacial ice from the site, and establishment of ice-distal conditions. However, these glacially-influenced laminated sediments qualitatively contain fewer dropstones than usual from mid to late Holocene Arctic marine deposits below mobile sea-ice (Pieńkowski et al., 2012). Alternatively, either an ice-shelf marker by basal on-freezing rather than undermelt (Holland et al., 2007), or severe landfast sea-ice that limited dropstone deposition prevailed during Subzone IIb. Similar early Holocene laminated facies are noted for sediments north of Axel Heiberg Island (Hein et al., 1990; Hein and Mudie, 1991). Biological productivity remains low in Subzone IIb, conversely to Subzone IIc: foraminifera and dinocysts are characterized by monospecificity and extremely low concentrations (\(<160\) cysts/g; \(<36\) benthic foraminifera/10 cc). Subzone IIb taxa (\(S.\) horvathi, \(I.\) cezare) can, however, withstand extreme conditions characterized by perennial sea-ice and minimal food (Green, 1960; Wollenburg and Mackensen, 1998; Head et al., 2001; Matthiessen et al., 2005). This agrees with pervasive landfast sea-ice, although it does not preclude an ice-shelf (basal on-freezing) with advection of sparse organic material (Domack and Harris, 1998; cf. Post et al., 2007). Critically, the markedly impoverished microfossil assemblages contradict interpretation of this subzone as an ice-distal environment where rising concentrations and diversities are expected (Korsun and Hald, 1998; Jaeger and Nittrouer, 1999; Gilbert et al., 2002; Knudsen et al., 2008; Pieńkowski et al., 2012).

Recommencing coarse deposition and faint laminae in Subzone IIC mark the return to ice rafting within an ice-distal setting (Evans and Pudsey, 2002). Rising productivity is marked by increasingly abundant and diverse microfossils and elevated BioSil. Similar stratigraphies recording pervasive landfast sea-ice with limited ice-transported detritus (IRD) as in Subzone IIb, followed by a return to dropstone deposition on ice break-up (Subzone IIc), are reported for east Greenland (Dowdeswell et al., 1994a, 1994b, 2000; Ó Cofaigh and Dowdeswell, 2001) and the Axel Heiberg Island continental margin (Hein et al., 1990; Hein and Mudie, 1991).

Overall, highly abundant pre-Quaternary dinocysts and pre-Late Wisconsinan molluscs within Zone II indicate a notable reworked component in the fossil assemblages and reinforce the interpretation of a glacially-influenced, ice-proximal to ice-distal glaciomarine environment.

4.6. Zone III (406–386 cm; 10.3–9.8 cal ka BP)

4.6.1. Chronology

Zone III encompasses two foraminifera-based radiocarbon dates (benthics: OS-92978, 10.4 cal ka BP; planktonic foraminifera: OS-95119, 10.0 cal ka BP; Table 1); two deposit-feeding mollusc dates are excluded due to the Portlandia Effect.

4.6.2. Characteristics

Silty clay, rare small lonestones, relatively fine sediments, and low sedimentation rates (<1 mm/cal yr) characterize Zone III (Fig. 2). Density decreases through this zone (\(-1.7–1 \) g/cm³) whereas MS shows a peak (\(-93.9 \times 10^{-5} \) SI), decreasing (\(-50.3 \times 10^{-5} \) SI) upwards (Fig. 3). Dinocyst concentrations (>160 cysts/g) and fluxes (>3400 cysts/cm²/cal yr) are higher than in underlying zones; assemblages include \(I.\) minutum, along with \(P.\) protoperidinium spp., \(B.\) lirigedospermum spp., and \(I.\) cezare (Fig. 4). NPP diversity, abundance, and flux increase (>1000 specimens/g; >20,000 specimens/cm²/cal yr), and acritarchs P and Q, and foraminiferal linings (forms A, B) appear for the first time (Fig. 4). Abundant benthic foraminifera include \(I.\) norcrossi, \(C.\) reniforme, \(C.\) lobatus, \(E.\) excavatum \(f.\) clavata, and \(C.\) neoteretis; \(N.\) pachyderma has its maximum abundances within 004PC (Fig. 5). Ostracods (\(C.\) paralatissimum), molluscs (\(Y.\) villosa), and infrequent worm (\(P.\) polychaeta?) tubes also occur (Fig. 5).

4.6.3. Interpretation

Zone III represents terminating ice-distal conditions and commence-ment of massive, fine-grained sedimentation and low sedimentation rates typical of postglacial CAA lithologies (MacLean et al., 1989; Andrews et al., 1991; Pieńkowski et al., 2012). Reduced dropstones (lonestones) suggest less iceberg rafting, with sea-ice as the primary IRD agent. High MS may indicate high iron concentrations, suggesting an extra-local source rather than the calcareous-bedrock-dominated Parry Channel (Thorsteinsson and Kerr, 1967). Closest iron-rich lithologies are on Somerset Island and Boothia Peninsula (Trettin, 1989), implying southerly ice-rafting.

Zone III marks the onset of prominent biological productivity with elevated microfossil diversities and abundances, and increased BioSil (Figs. 3–5). Micro- and macrofossils (worm tubes, molluscs, ostracods) imply increased biological productivity (Fig. 5). Of particular importance is the appearance of planktonic foraminifera, today rare in Parry Channel east of the Lowther–Young sill due to shallow water depths (Vilkis, 1974, 1989; Schröder-Adams et al., 1990; Hunt and Corliss, 1993). Planktonic foraminifera suggest significant influx of deeper water (>200 m), most likely AIW, into western Parry Channel. Abundant benthic \(N.\) barleeanum (=\(M.\) zaundani; \(S.\) acher and \(C.\) le, 1986) and \(C.\) neoteretis also mark inflow of saline, relatively
warm Atlantic bottom waters within the CAA (cf. Hunt and Corliss, 1993; Jennings et al., 2006, 2011; Pieńkowski et al., 2012).

4.7. Zone IV (386–295 cm; 9.8–7.0 cal ka BP)

4.7.1. Chronology

Three dates on a polychaete tube (OS-74899), algal matter (OS-74915), and mixed benthic foraminifera (MBF; Beta-124622) constrain the age-depth model in Zone IV (Table 1; Fig. 2); three molluscan dates potentially subject to the Portlandia Effect are excluded.

4.7.2. Characteristics

The massive silty clay with infrequent limestones in Zone IV is similar to that in Zone III (Fig. 2). Density is near-uniform (~1 g/cm³) whereas MS initially decreases (37.7–3.8 × 10⁻³ SI) before rising slowly up-core (25.1 × 10⁻³ SI). BioSil values are ~4.3%, slightly higher than in Zone III (Fig. 3). Dinocyst concentrations, diversities, and fluxes increase steadily (Fig. 4), with prominent increase in Zone III (Fig. 3). Dinocyst concentrations, diversities, and fluxes increase steadily (Fig. 4), with prominent increase in Zone III (Fig. 3). Foraminiferal linings, including predators (Thomsen and Vorren, 1986). Reduced coarse terrigenous input implies cessation of glacially-influenced sedimentation similar to modern conditions (MacLean et al., 1989; Pieńkowski et al., 2011, 2012). Neverthe-less, infrequent dropstones indicate mobile sea-ice or sporadic icebergs.

4.7.3. Interpretation

Zone IV represents continued species diversification across all microfossil groups. High Arctic species (e.g. I. minutum, Brigantedinium spp., I. cezare) are joined by indicators of Atlantic-derived waters, as in Zone III, including N. pachyderma (Vilks, 1974, 1989), N. barleeanum (Schäfer and Cole, 1986) and C. neoteretis (Jennings et al., 2006, 2011). Favorable conditions are also suggested by N. labradorica, indicative of heightened productivity, consistent with elevated BioSil and higher primary productivity. Occurrence of a carnivorous opisthobranch gastropod (Retusa sp.) suggests that the Zone IV ecosystem supported a rich food web, including predators (Thomsen and Vorren, 1986). Reduced coarse sediment input implies cessation of glacially-influenced sedimentation and commencement of postglacial sedimentation similar to modern conditions (MacLean et al., 1989; Pieńkowski et al., 2011, 2012). Nevertheless, infrequent dropstones indicate mobile sea-ice or sporadic icebergs.

4.8. Zone V (295–260 cm; ~7.0–5.8 cal ka BP)

4.8.1. Chronology

One MBF date (Beta-124621; Table 1) is available from the top of this zone.

4.8.2. Characteristics

Lithologically, Zone V is similar to Zone IV (Figs. 2, 3) but the dinocyst assemblage composition differs in having a pronounced I. cezare peak (~33%), elevated E. karaense and Brigantedinium spp., reduced I. minutum, and sparse Polykrikos (Fig. 4). NPPs are rare, with only foraminiferal linings increasing (Fig. 4). Total foraminiferal concentrations remain low; Buccella frigida and Ephidium sp. show small peaks, whereas N. labradorica and planktonic foraminifera abundances decline (Fig. 5).

4.8.3. Interpretation

Zone V implies deteriorating environmental conditions. Abundant I.? cezare indicates a sea-ice increase, and may record severe (perennial) pack ice (Head et al., 2001; Matthiessen et al., 2005). Along with decreasing microfossil concentrations and diversities, these ice-indicators imply the onset of harsh environmental conditions. This zone marks the last appearance of planktonic foraminifera and some benthic foraminifera (e.g. N. barleeanum). Zone V likely represents cessation or reduction of warmer AIW inflow into western Parry Channel and transition to cooler, AOSW-dominated circulation (Zones VI–VII).

4.9. Zone VI (260–100 cm; ~5.8–1.6 cal ka BP)

4.9.1. Chronology

Two dates (MBF, Beta-124620; algal matter, OS-74918) were derived for this zone (Table 1).

4.9.2. Characteristics

Zone VI is texturally identical to Zones IV and V. Density and MS decline slightly upwards, but BioSil increases substantially (from 3.60 to 8.31%). Dinocyst concentrations are three to six times greater than Zone V. I. minutum (3–17%) and I. cezare show reduced percentages; Protoperidinium cysts dominate dinocyst assemblages, while Polykrikos spp. and Spiniferites spp. occur sporadically. Abundances of H. minor, Acritarch P, and foraminiferal linings are elevated. Planktonic foraminifera are absent, while benthic foraminifera are infrequent. Only I. norcissi and rare N. labradorica, Ephidium sp., and Stainforthia loeblichii occur. Ostracods and molluscs are absent, and macro-algal matter occurs sporadically.

4.9.3. Interpretation

Zone VI is considered a progression to ‘modern’ (i.e. AOSW-influenced) environmental conditions characterized with low salinity and temperature, and prolonged seasonal sea-ice cover. Typical High Arctic taxa (Brigantedinium spp., I. minutum, Polykrikos Arctic morphotypes) occur, though phototrophic dinocysts (Spiniferites sp.) suggest seasonally open water (Mudie and Harland, 1996; cf. Matthiessen et al., 2005). However, the marked I. minutum reduction is unusual in both modern (Mudie and Rochon, 2001) and paleo-CAA contexts (Ledu et al., 2010a, 2010b; Pieńkowski et al., 2011, 2012), as this prolific taxon generally dominates dinocyst communities. The rise in dominant Protoperidinium cysts may be due to out-competing other species for food or alternatively, preservation issues (cf. Zonneveld et al., 2007). Increased BioSil may indicate abundant sea-ice diatoms, a prominent food source for hetertrophic dinoflagellates (e.g. Levinse and Nielsen, 2002; Sher and Sherr, 2007). Zone VI marks the disappearance of calcareous benthic foraminiferal tests (~4.7 cal ka BP), as documented from eastern Parry Channel (Gregory et al., 2010; Pieńkowski et al., 2012).

4.10. Zone VII (100–0 cm; 1.6 to ≤0.75 cal ka BP)

4.10.1. Chronology

One molluscan deposit-feeder ¹⁴C date (Table 1; 44 cm; Beta-115388; 870 cal yrs BP) provides a maximum age on age-depth model projection and a core top age of 750 yrs BP, with a minimum core top age of 0 yrs BP. An age closer to 750 yrs BP is more consistent with loss of upper seabed sediments during piston coring.

4.10.2. Characteristics

Aside from a sandy peak towards the top, this zone is texturally identical to Zone IV. Density values are slightly lower (~1.3 g/cm³) than in Zone V; shows a pronounced peak (~88.0 × 10⁻⁵ SI) towards the top, and BioSil reaches maximum values (12.31%). Palynomorph concentrations and fluxes show maxima (27,300 cysts/g; 10,500 NPPs/g; 306,000 cysts/cm²/cal yr; 118,000 NPPs/cm²/cal yr). Dinocyst assemblage structures are similar to modern assemblages: I. minutum and Brigantedinium spp. co-dominate, while I.? cezare and Polykrikos spp.
are reduced. NPP Acritarch P, P. subtilitheca, and P. fritilla have peak concentrations, but foraminiferal linings decline, in accordance with decreasing foraminiferal tests.

4.10.3. Interpretation

Zone VII represents essentially modern environmental conditions of 10 month sea-ice cover per year and AOSW throughflow in McDougall Sound. The MS peak in the sandy layer may reflect either enhanced sea-ice rafting due to an increase in volume, mobility, or melt-out (Smith and Andrews, 2000; Ő Cofaigh and Dowdeswell, 2001; Andrews et al., 2002), or sporadic icebergs entering the area. Dinocyst assemblages are typical of the central CAA (Mudie and Rochon, 2001; Ledu et al., 2010a, 2010b). NPP assemblages are similar to cold water communities from Greenland and Coronation Gulf (Mudie and Harland, 1996; Roncaglia, 2004; Roncaglia and Kuipers, 2004; Pieńkowski et al., 2011, 2012). The sparsity of > 125 μm calcareous benthic foraminifera is typical of modern CAA conditions (Gregory et al., 2010; von Prause, 2011; Pieńkowski et al., 2012), in contrast to the Canadian Polar Margin (Schroder-Adams et al., 1990). Although foraminiferal linings decline, their presence throughout Zone VII suggests the occurrence of foraminifera not found as microfossils > 125 μm. Such disappearance may be due to taphonomic (dissolution, destruction of delicate agglutinates due to oven-drying) and/or biological (switch to smaller and/or delicate agglutinates) factors (cf. Furze et al., 2010).

5. Discussion

5.1. Immediate deglaciation (>10.8 cal ka BP)

The crudely stratified Zone I unit provides the first documentation of the deglacial chronology of the central CAA marine channels and expands upon pre-existing, adjacent land-based records. Zone I density values are similar to marine diamictics in eastern Parry Channel (MacLean et al., 1989). Lodgement till deposited by grounded LGM ice potentially underlies such units, however its high bulk densities and shear strengths (Anderson et al., 1992; Licht et al., 1996) inhibit core penetration. Contrary to earlier models proposing LGM ice-shelves (Dyke and Prest, 1987), grounded ice is now invoked for Viscount Melville Sound (England et al., 2009), Peel Sound and Prince Regent Inlet (MacLean et al., 2010), and other CAA straits (Blasco et al., 2005). This paper builds on this consensus.

Reworked pre-Late Wisconsinan dates within Zone I provide a maximum limiting age (39.8 14C ka BP) on initial ice advance through the core penetration. Contrary to earlier models proposing LGM ice-shelves (Dyke and Prest, 1987), grounded ice is now invoked for Viscount Melville Sound (England et al., 2009), Peel Sound and Prince Regent Inlet (MacLean et al., 2010), and other CAA straits (Blasco et al., 2005). This paper builds on this consensus.

5.2. Ice-proximal to ice-distal progression (~10.8–10.3 cal ka BP)

Zone II records succession from ice-proximal (Zone Ia) to ice-distal (Zone Ic) conditions. Laminated silty clay with coarse sand and dropstones (Zone IIa) typical of the early deglacial NWP (MacLean et al., 1989; Mudie et al., 2006; Pieńkowski et al., 2012) signifies close proximity to the glacial grounding line. The subsequent dropstone-free, well laminated sediments (Zone IIb) may record deposition from an ice-shelf or an interval of severe sea-ice following deglaciation, as reported from southeastern Barrow Strait (Pieńkowski et al., 2012) and eastern Greenland (Scorsby Sund; Dowdeswell et al., 1994a, 1994b, 2000; Ő Cofaigh and Dowdeswell, 2001). Lithostratigraphically, distinguishing between ice-shelf vs. perennial sea-ice deposition (e.g., Zone IIb) is highly problematic, both settings producing similar sediments under conditions of basal on-freezing (Holland et al., 2007).

Nevertheless, limited potential for deglacial basal on-freezing, coupled with greater glacio-isostatic water depths (Dyke et al., 1991) and higher tidal amplitudes (Griffiths and Pelletier, 2008) during this interval argue against a cohesive glacially-fed ice-shelf in western Barrow Strait for which no sedimentological or geomorphic evidence has been reported. On the basis of the current evidence for an abrupt lift-off of the formerly grounded trunk-glacier, we interpret the absence of lithic material > 250 μm in Zone IIb as evidence of pervasive landfast sea-ice as found in deglacial Parry Channel (Pieńkowski et al., 2012; submitted for publication). The overlying faintly laminated sediments with dropstones (Zone Ic) likely indicate increasing distance from the grounding line following sea-ice break-up (Zone Ibb; Cowan et al., 1997; Gilbert et al., 2002).

Zone II represents increasingly favorable conditions for bioproduction, expressed as rising microfossil abundance and diversity, and rising BioSil, similar to other CAA glaciomarine settings (Pieńkowski et al., 2012). Previous, qualitative foraminiferal data from 004PC glaciomarine sediments (Blasco et al., 2005) were interpreted as an ‘ice-shelf’ community. However, succession across all microfossil groups and increasing BioSil (diatoms) suggest increasingly ice-distal conditions rather than presence and break-up of an ice-shelf (Post et al., 2007).

5.3. Deep-water penetration (~10.3–9.8 cal ka BP)

Zone III marks the commencement of deposition of massive fine-grained, bioturbated sediments with infrequent dropstones typical of the Holocene CAA (MacLean et al., 1989; Andrews et al., 1991; Pieńkowski et al., 2012). Simultaneously, this represents the start of higher bioproductivity including planktonic and benthic microbiota, polychaetes, crustaceans, and molluscs. Of particular significance is the appearance of planktonic foraminifera (N. pachyderma) soon after deglaciation, peaking at ~10.0 cal ka BP* (Fig. 6), as found in eastern Parry Channel (cf. Vare et al., 2009; cf. Gregory et al., 2010; Pieńkowski et al., 2012). Planktonic foraminifera are rare in the modern central CAA due to shallow water depths and the restricted, sill-controlled circulation (Vilks, 1969, 1974, 1989; Hunt and Corliss, 1993). However, deglacial water depths were greater due to glacio-isostatic depression (Dyke et al., 1991; England et al., 2006). Regional marine limit is ~125 m (Dyke et al., 1991) above modern sea-level, implying deglacial water depths of ~390 m at the core site (modern water depth 267 m). Such physiography would significantly alter CAA oceanography, allowing for penetration of deeper waters carrying planktonic foraminifera, such as AIW below ~250 m (Jones and Coote, 1980; Tang et al., 2004). The flow trajectory of this water and the general oceanographic circulation upon deglaciation remain cryptic, however. Following significant deglacial freshwater export, marine mammal (B. mysticetus) and molluscan-
based reconstructions suggest near-modern surface circulation as early as ~10 cal ka BP (cf. Andrews et al., 1993; Dyke et al., 1996a, 1996b). If the early Holocene planktonic foraminifera in eastern Parry Channel (Pieńkowski et al., 2012) indicate Baffin Bay-derived AIW, a different circulation to modern would be invoked. Alternatively, a near-modern paleocirculation would suggest a northwest AIW source via Viscount

Fig. 6. Comparison between the present study (9722-004PC) and regional data derived from marine and terrestrial environments, including: foraminiferal assemblages and stable isotope ratios, dinocyst-based modern analogue technique (MAT) transfer function reconstructions of sea-surface temperature (SST) and sea-ice (dashed lines denote modern values); mono-unsaturated highly-branched isoprenoids (IP25) from Barrow Strait; marine mammal and driftwood abundances from raised marine shorelines; and ice-core records from Ellesmere (Agassiz Ice Cap) and Devon islands. Water depths at the Lowther–Young islands sill are also shown. Reference designations are as follows: 1: Dyke et al. (1991); 2: Pieńkowski et al. (2012); 3: Ledu et al. (2010a); 4: Vare et al. (2009); 5: Dyke et al., 1996b; 6: Dyke et al., 1999; 7: Gordillo and Aitken (2001); 8: Dyke et al. (1997); 9: Paterson et al. (1977); 10: Fisher et al. (1995). All chronologies are presented as calibrated years BP, and originally uncalibrated dates (Dyke et al., 1991, 1996b, 1997, 1999; Gordillo and Aitken, 2001) were calibrated where necessary.
Melville Sound though deglacial water depths at the Lowther–Young sill (~260 m; Fig. 6) may have been insufficient to allow westward deep water (>250 m) penetration while Queen’s Channel (Qu. Ch.; Fig. 1A) may have also been too shallow. More work around the critical Lowther–Young sill is needed to trace the pathway of this prominent planktonic foraminifera signal.

The core site is at the northern end of the Lowther–Young sill, the postulated location for final decoupling of Laurentide and Innuittian ice-sheets (Dyke, 2004) and the establishment of oceanic throughflow via Parry Channel (Dyke et al., 1996b; Pieńkowski et al., 2012). Deglacial dates for Lowther Island (Dyke, 1993) and the 004PC site (this study) constrain the timing of final Innuittian and Laurentide separation to between 10.8 and 10.4 cal ka BP. Given the first appearance of planktonic foraminifera in 004PC, the initiation of marine transport across the Lowther–Young sill is tentatively assigned (age-depth model extrapolation) to ~10.3 cal ka BP.

5.4. Biologically favorable conditions (~9.8–7.0 cal ka BP)

Following the influx of planktonic foraminifera into central Parry Channel, all fossil groups show increased diversity and abundances, accompanied by increased BioSil. Higher organisms such as molluscs (including gastropods) also occur, suggesting a productive ecosystem at both benthic and planktonic levels and more favorable environmental conditions.

An amelioration, following the early Holocene planktonic foraminifera signal, is also apparent in eastern Parry Channel (Pieńkowski et al., 2012), and has been linked to a regional Holocene Thermal Maximum (HTM: Kaufman et al., 2004 vs. Gajewski et al., 2000), itself potentially promoted by maximum solar radiation receipts (Tricot and Berger, 1988; Bradley, 1990). In the study area, Kaufman et al. (2004) proposed HTM commencement at 10.0–8.0 cal ka BP and termination by 5.0–6.0 cal ka BP. Zone IV may encompass this amelioration, but dinocyst assemblages differ compared to eastern records. Specifically, cysts of obligate phototrophs (Opeunculoluminium centrocarpum, Spiniferites elongatus), present during this time in eastern Parry Channel and interpreted to indicate extended summer open water (Pieńkowski et al., 2012), are absent in 004PC. Reduced sea-ice >6 cal ka BP is also proposed by IP25 (mono-unsaturated highly branched isoprenoids from sea-ice diatoms) from southeastern Barrow Strait and the southwestern CAA (Vare et al., 2009; Belt et al., 2010). Not all interpretations agree with a regional marine amelioration at the time, however. In particular, quantitative dinocyst transfer functions based on modern analogue techniques (MAT) from Barrow Strait show highly fluctuating, though cooler conditions 8–5 cal ka BP, similar to MAT reconstructions from Lancaster Sound (Fig. 6; Ledu et al., 2008, 2010a).

Nonetheless, data from adjacent islands support a thriving ecosystem during an ameliorated early to mid Holocene (Fig. 6), as suggested by micro- and macro-fossils in Zone IV. These data include pollen assemblages from Somerset Island (Gajewski, 1995), maximum melt >6.7 cal ka BP on the Agassiz Ice Cap (Ellesmere Island; Fisher and Koerner, 2003), and range expansions of plants and animals adapted to more favorable environments (Bradley, 1990). Furthermore, marine materials collected from central CAA paleoshorelines suggest a warmer early to mid Holocene with extensive summer open water (Fig. 6), including diverse mollusc assemblages (Dyke et al., 1996a; Gordillo and Aitken, 2001) and reduced driftwood abundances (presumed transported into the CAA by sea-ice; Dyke et al., 1997). Early Holocene (10.2–8.9 cal ka BP, Dyke et al., 1996b) bowhead whale bone abundances coincide with favorable Zone IV conditions, although the later (8.9–5.5 cal ka BP) decline in whale bones attributed to severe sea-ice conflicts with our data and other recent CAA marine records (Vare et al., 2009; Belt et al., 2010; Pieńkowski et al., 2012).

5.5. Development of ‘modern’ oceanographic conditions (post 7.0 cal ka BP)

Data from 004PC show a mid to late Holocene establishment of essentially ‘modern’ conditions with minor sea-ice fluctuations (increase 7.0–6.0 cal ka BP; decrease ~5.0–2.0 cal ka BP) whereas the most pronounced environmental changes are evident in the early to mid Holocene. Exclusion of AW due to glacio-isostatic rebound, coupled with cooling climate (Bradley, 1990; Koerner and Fisher, 1990, 2002; Fisher et al., 1995) likely contributed to the establishment of such ‘modern’ conditions. Water depth changes explain the disappearance of planktonic foraminifera by 6.0 cal ka BP. By 6.5 cal ka BP, water depths were only ~30 m deeper than present, marking significant postglacial shallowing (~125 m; Fig. 6; Dyke et al., 1991) which restricted water flow to AOSW. Consequently, colder conditions would be expected. The post mid-Holocene progression to near-modern conditions is especially evident in the palynomorph assemblages ≤2.0 cal ka BP when modern dinocyst assemblages and Arctic acritarchs appear (Mudie and Rochon, 2001; Roncaglia, 2004).

The late Holocene sparsity of benthic foraminifera is typical of CAA sediments (MacLean et al., 1989; Gregory et al., 2010; Pieńkowski et al., 2011, 2012), perhaps due to dissolution and/or switch to smaller/agglutinated taxa (cf. Furze et al., 2010). The >125 μm fraction assessed in this study does not sample smaller taxa and oven-drying may have destroyed the relatively delicate agglutinates (Lloyd et al., 2007). However, agglutinates dominating 004PC sediments ≤6 cal ka BP were interpreted to indicate AOSW throughflow in a previous (~63 μm) assessment (Blasco et al., 2005), in keeping with our interpretation of ‘modern’ oceanography. Our late Holocene foraminiferal concentrations are comparable to regional modern >150 μm data (Hunt and Corliss, 1993), and apparent contradictions (calcareous vs. agglutinated foraminiferal ratios) between our and previous studies may reflect analyzed size fractions [Schröder-Adams et al., 1990 (~63 μm) vs. Hunt and Corliss, 1993 (>150 μm)]. Arctic marine records (Mudie et al., 2006; Ledu et al., 2010a; Pieńkowski et al., 2011, 2012; this study) show consistently present foraminiferal linings, even in the absence of calcareous tests, perhaps highlighting the paleoenvironmental potential of foraminiferal linings (von Pruse, 2011).

Inkeeping with our interpretation of a mid to late Holocene switch to AOSW-dominated circulation, cooler conditions after ~6.0 cal ka BP are also apparent in eastern Parry Channel in IP25, and multiproxy marine records (Fig. 6; Short et al., 1994; Vare et al., 2009; Pieńkowski et al., 2012). Notably, the prominent BioSil rise in IP25 after ~7.0 cal ka BP mimics the trend of Holocene IP25 elsewhere in the CAA (Fig. 6; Vare et al., 2009; Belt et al., 2010), perhaps corresponding to increased sea-ice diatoms in the regional algal community (Riedel et al., 2003). However, this interpretation requires validation by direct comparison between diatom assemblages, BioSil, and IP25. Contrary to this study and other marine data outlined above, dinocyst MAT transfer functions indicate warming (higher sea-surface temperatures, but longer sea-ice season, compared to modern) in Barrow Strait after 5 cal ka BP (Fig. 6; Ledu et al., 2010a), but with longer sea-ice cover and higher sea-surface temperatures <5 cal ka BP in Dease Strait and Lancaster Sound (Fig. 6; Ledu et al., 2008, 2010a).

Unlike dinocyst transfer functions, terrestrial data support a mid Holocene cooling (Fig. 6). For example, ice cores indicate pronounced cooling <5.5 cal ka BP on Ellesmere Island (Fisher et al., 1995), and <4 cal ka BP on Devon Island (Paterson et al., 1977). Furthermore, increasing driftwood and walrus bone abundances suggest greater sea-ice influence in the central CAA (Fig. 6; Dyke et al., 1997, 1999), as do reduced-diversity paleo-mollusc assemblages, and decreasing boreal-Arctic molluscan taxa after ~6 cal ka BP (Dyke et al., 1996a; Gordillo and Aitken, 2001). Nevertheless, abundant mid to late Holocene (~3–3 14C ka BP ≈ 5.1–2.4 cal ka BP; Fig. 6) bowhead bones previously interpreted as signalling reduced
sea-ice (Dyke et al., 1996b) are at odds with regional cooling. However, the highly mobile and migratory life-habit of bowheads, coupled with taphonomic factors (carcass floating/ice-rafting; standing/ice-trapping locations) likely complicates a straightforward correlation between sea-ice and fossil whale occurrences (Furze et al., submitted for publication).

Although some late Holocene variations are apparent, short-term climatic variations (Little Ice Age, 20th Century warming) are absent in 004PC, similar to other east-central records (Ledu et al., 2008, 2010a; Pieńkowski et al., 2012). This is likely due to: low resolution and low sedimentation rates with high bioturbation; sample site within a zone of high-volume water transport; the High Arctic setting; or primarily dinocyst-based paleoenvironmental interpretations (with invariable late Holocene sediments, apparent disappearance of foraminifera, and cryptic NPPs). Conversely, such episodes are apparent in lacustrine records (e.g., Gajewski and Atkinson, 2003; Smol et al., 2005; Peros and Gajewski, 2009), ice cores (Paterson et al., 1977) and recent marine data from the southwestern CAA and adjacent Beaufort Shelf (Schell et al., 2008b; Pieńkowski et al., 2011; Bringué and Rochon, 2012).

To conclude, the long-term paleoenvironmental histories derived from 004PC agree with many other marine and terrestrial interpretations from the CAA. Notable exceptions are bowhead whale-based interpretations (Dyke et al., 1996b, but see Furze et al., submitted for publication) and dinocyst MAT-based transfer functions (Ledu et al., 2010a, 2010b). Nevertheless, our data as well as other marine and terrestrial CAA archives (e.g., Bradley, 1990; Dyke et al., 1996a; Vare et al., 2009; Pieńkowski et al., 2012) indicate pronounced deglacial to mid Holocene environmental changes fluctuating on a scale not observed today. Discrepancies between this and other marine reconstructions may be attributable to chronostratigraphic factors (∆R, age-depth model), quantitative vs. qualitative, and single- vs. multiproxy approaches.

Core 004PC offers important new insights on the late Quaternary environmental evolution of the CAA, showing striking similarities to other deglacial to Holocene archives (Pieńkowski et al., 2012). More detailed late Pleistocene–Holocene multiproxy marine records are needed to assess how typical such paleoenvironments are for the CAA in particular, and for Arctic Canada overall. Such records will resolve issues that currently hinder an integrated understanding of CAA paleoceanography, including: deglacial timing and style; sources of early Holocene planktonic foraminifera; and problems within commonly-applied proxy groups (periodically absent foraminifera; low-diversity, invariable dinocysts; cryptic environmental preferences of NPPs). Meanwhile, 004PC constitutes a key link between existing eastern CAA studies and future research into the western CAA, including Viscount Melville Sound and McClure Strait.

6. Conclusions

The following conclusions can be drawn from multiproxy analyses on 9722-004PC:

- The basal stratified diamicton (Zone I) interpreted as waterlain ‘rain-out till’ evidences the last stages of regional deglaciation. Precise deglacial timing is ill-defined due to scarcity of dateable materials at the diamicton/laminated unit transition. Reworked materials of pre-Late Wisconsinan age provide a maximum control on glaciation at 39.8 14C ka BP. Age-depth model extrapolations suggest deglaciation at ~10.8 cal ka BP.
- Zone II (~10.8–10.3 cal ka BP) shows initially ice-proximal, coarse deposition (IIa), followed by a well-laminated unit (IIb) with sparse microfossils interpreted as a cessation in coarse deposition due to pervasive sea-ice. Returning coarse deposition (IIc) marks increasingly ice-distal conditions with increased biological productivity.
- N. pachyderma signal AIW (> 250 m depth) penetration either from Baffin Bay or the (north)west Arctic Ocean (Zone III; ~10.3–9.8 cal ka BP). Oceanic throughflow and separation of Laurentide and Innuittian ice sheets are implied by ~10.3 cal ka BP.
- Increasing microfossil abundance and species diversification show ameliorated, biologically favorable conditions at ~9.8–7.0 cal ka BP (Zone IV).
- Polar conditions commence ~7.0 cal ka BP (Zones V–VII); near-modern dinocyst assemblages and reduced foraminifera collectively mark AOSW-dominated throughflow.

Acknowledgments

Funding from the NSERC Northern Chair Program awarded to England enabled this research. A MacEwan University Faculty Research, Scholarly Activity and Creative Achievements Fund awarded to Furze, Pieńkowski, England, Blasco, and MacLean (“Deglacial Environments of the Western Canadian High Arctic”) is gratefully acknowledged. We thank Charlie Schwegner and Harvey Friee (University of Alberta) for enabling access to their palynology laboratory. We are particularly grateful to Kate Jarrett for core subsampling, and to Owen Brown (both GSC-Atlantic) for conducting grain size analyses. Maureen Soon at the Pacific Centre for Isotopic and Geochemical Research (University of British Columbia) is thanked for BioSil measurements and help with data interpretation. We thank Vera Pospelova, André Rochon, and one anonymous reviewer whose comments improved the manuscript. Geert de Lange is thanked for editorial handling of this manuscript.

References

Belt, S.T., Vare, L.L., Massé, G., Manners, H.R., Price, A.C., MacLachlan, S.E., Andrews, J.T., Schmidt, S., 2010. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quaternary Science Reviews 29, 3490–3504.

Lehman, J., 1980. Ice mass flow and subglacial circulation in some channels of the Canadian Arctic Archipelago. Arctic 33, 189–197.

Mudie, P.J., Rochon, A., Blasco, S., 2005. Decadal-scale sea ice changes in the Canadian Arctic and their impacts on humans during the past 4,000 years. Environmental Archaeology 10, 113–126.

